Deconstructing Black-Litterman*

Richard Michaud, David Esch, Robert Michaud New Frontier Advisors Boston, MA 02110

Presented to: fi360 Conference Sheraton Chicago Hotel & Towers April 25-27, 2012, Chicago, II

* Forthcoming: Michaud, Esch, Michaud, 2012. "Deconstructing Black-Litterman: How to Get the Optimal Portfolio You Already Wanted." NFA White Paper.

About New Frontier

- Institutional research and investment advisory firm
- Pioneers in asset allocation theory and practice
 - Michaud and Michaud, 1998, 2nd ed. 2008. Efficient Asset Management, Oxford
- Inventors of Michaud Resampled Efficient Frontier™
 - Four U.S. patents, two pending; worldwide patents pending
- Managers of over \$1B global ETF model portfolios
- Institutional software providers to managers/consultants worldwide
- Sponsors of fi360 optimization system

Outline

- Limitations of Markowitz mean-variance (MV) optimization
- Black-Litterman (BL) proposal to solve Markowitz instability
 - Illustrate BL optimization
 - "Tilt" asset allocation framework relative to benchmark
 - Same as Markowitz under identical conditions
 - Michaud resampling alternative better diversified portfolios
- BL benchmark relative view tilted asset allocation
 - Unrealistic assumptions
 - Unsolved estimation error instability
 - Statistical inference, optimization, risk aversion limitations
 - Not recommendable in practice relative to alternatives

Creating Optimized Asset Allocations

- Markowitz mean-variance (MV) efficiency
 - The standard for half a century
- Theoretically correct
 - Promise of optimally diversified portfolios
 - Central to all of modern finance and investment theory

But MV Has Severe Limitations

- Poor diversification
- Often poor performance
- Example: Ten Asset Classes
 - Money market, intermediate fixed, long-term fixed, High yield, small cap value, small cap growth, large cap value, large cap growth, international equity, real estate
 - Thirty years of historical monthly returns

MV Composition Map

Asset Allocation In Practice

- Manage the inputs
- Heavily constrain the solution
- Why bother asset allocations (Michaud 1989)
 - Managers/consultants ignore MV optimized portfolio
 - Essentially disguised active management
 - Don't blame Markowitz

Two Alternative Solutions

- Black-Litterman optimization
 - Benchmark portfolio relative to investor view "tilts"
 - Unconstrained MV optimization
- Michaud Patented Resampled Efficient Frontier[™] alternative
 - Generalized Markowitz efficient frontier
 - Resampling inputs
 - Patented averaging of simulated MV frontiers

Illustrating Black-Litterman Optimization

Black-Litterman (BL) Optimization Process

- 1. Begin with optimization universe and risk estimates (covariance)
- 2. Posit a "market" or benchmark portfolio in "equilibrium" Implies "market" portfolio MV max Sharpe ratio (MSR) "optimal"
- 3. Compute "inverse" returns that make benchmark MSR "optimal"
- 4. Posit investor "tilt" views
- 5. Compute BL view means relative to investor views
- 6. BL = unconstrained MV efficient frontier MSR optimal portfolio
- BL a "tilted" benchmark portfolio reflecting investor views

Step 1: Risk-Return Estimates

Example: Michaud (1998, Ch. 2)

Asset Name	Mean	Std Dev	Euro Bonds	US Bonds	Canada	France	Germany	Japan	UK	US
Euro Bonds	3.22%	5.40%	1.00	0.92	0.33	0.26	0.28	0.16	0.29	0.42
US Bonds	2.96%	6.98%	0.92	1.00	0.26	0.22	0.27	0.14	0.25	0.36
Canada	4.64%	19.04%	0.33	0.26	1.00	0.41	0.30	0.25	0.58	0.71
France	10.53%	24.36%	0.26	0.22	0.41	1.00	0.62	0.42	0.54	0.44
Germany	6.36%	21.55%	0.28	0.27	0.30	0.62	1.00	0.35	0.48	0.34
Japan	10.53%	24.37%	0.16	0.14	0.25	0.42	0.35	1.00	0.40	0.22
UK	9.53%	20.83%	0.29	0.25	0.58	0.54	0.48	0.40	1.00	0.56
US	8.53%	14.89%	0.42	0.36	0.71	0.44	0.34	0.22	0.56	1.00

Step 4: Posit Investor View Example: Arbitrage Portfolio of US vs. European Equities

Asset Name	Market	Mean	Std Dev	BL Mean	Investor
					Views
Euro Bonds	20.00%	3.20%	5.40%	2.20%	0.00%
US Bonds	20.00%	3.00%	7.00%	2.60%	0.00%
Canada	6.00%	4.60%	19.00%	9.20%	0.00%
France	6.00%	10.50%	24.40%	10.90%	-40.00%
Germany	6.00%	6.40%	21.50%	8.60%	-30.00%
Japan	6.00%	10.50%	24.40%	7.80%	0.00%
UK	6.00%	9.50%	20.80%	10.00%	-30.00%
US	30.00%	8.50%	14.90%	8.50%	100.00%
			View Prior Return		5.00%
			View Prio	5.00%	

MSR Unconstrained MV Optimal Portfolio BL Optimal: Tilted Allocations Relative to Benchmark

Asset Name	Market	BLView	BL	
		Means	Optimal	
Euro Bonds	20.00%	2.20%	20.00%	
US Bonds	20.00%	2.60%	20.00%	
Canada	6.00%	9.60%	6.00%	
France	6.00%	5.50%	-6.50%	
Germany	6.00%	3.80%	-3.40%	
Japan	6.00%	4.90%	6.00%	
UK	6.00%	7.30%	-3.40%	
US	30.00%	10.00%	61.20%	
Return	6.10%		7.20%	
Risk	9.60%		10.30%	

Black-Litterman *τ*-Adjustment

Black-Litterman BL* In Practice

- BL optimal portfolios are often uninvestable in practice
 - Often short and/or leveraged allocations
- BL introduce τ -adjusted inputs to the optimization process
 - τ -adjustment finds a sign constrained MSR optimal portfolio
- BL* is "tilted" benchmark relative sign constrained portfolio
 - Often BL* optimal BL portfolio in actual practice

Find τ-Adjusted MSR Optimal Portfolio BL*: Sign Constrained Tilts Relative to Benchmark

Asset Name	Market	BLView	BL	BL*
		Means	Optimal	Optimal
Euro Bonds	20.00%	2.20%	20.00%	20.00%
US Bonds	20.00%	2.60%	20.00%	20.00%
Canada	6.00%	9.60%	6.00%	6.00%
France	6.00%	5.50%	-6.50%	0.00%
Germany	6.00%	3.80%	-3.40%	1.50%
Japan	6.00%	4.90%	6.00%	6.00%
UK	6.00%	7.30%	-3.40%	1.50%
US	30.00%	10.00%	61.20%	45.00%
Return	6.10%		7.20%	5.40%
Risk	9.60%		10.30%	9.50%

τ-Adjusted Returns and Markowitz

- Compute Markowitz sign constrained efficient frontier with τadjusted returns
- BL* identical to Markowitz MSR portfolio!
 - BL* a point on the Markowitz efficient frontier
 - BL* is Markowitz for a given set of inputs
 - BL* is nothing new!
- BL* inherits Markowitz optimization limitations!
 - Does not solve input estimation error instability

BL Benchmark Framework

- Benchmark relative optimization nothing new
 - Often used to stabilize optimization process
 - CAPM "alpha" defined in a benchmark context
- But BL requires market equilibrium!
 - Equilibrium market unknown and indefinable
- Also Roll 1992 critique of benchmark optimization:
 - Optimization on the wrong frontier
 - Always portfolios with more return and less risk

Why Markowitz Optimization Unstable?

- Computers misuse investment information
 - Assume 100% certainty up to 16 decimals accuracy
 - Unrealistic for finance
 - Reason optimization sensitive to changes in inputs
 - Why portfolios don't make sense or have investment value
- Need to include realistic uncertainty in optimization process
- Michaud efficient frontier resampling process
 - Monte Carlo simulate statistically equivalent frontiers
 - Resampling allows measurement of information uncertainty
 - Average frontiers with patented process

BL* vs. Markowitz vs. Michaud

- Compute Michaud optimal portfolios with BL* inputs
- Compare BL*/Markowitz MSR vs Michaud MSR
- Compare Markowitz and Michaud composition maps

BL*/Markowitz vs. Michaud

		BL*/Markowit	
Asset Name	Market	z	Michaud
Euro Bonds	20.00%	20.00%	23.00%
US Bonds	20.00%	20.00%	19.90%
Canada	6.00%	6.00%	9.90%
France	6.00%	0.00%	4.30%
Germany	6.00%	1.50%	4.70%
Japan	6.00%	6.00%	6.60%
UK	6.00%	1.50%	5.40%
US	30.00%	45.00%	26.20%
Return	6.10%	5.40%	5.90%
Risk	9.60%	9.50%	9.30%

- Black-Litterman (BL) propose to solve MV optimization instability
 - Putative MSR MV optimal benchmark tilt asset allocation
 - Investability often requires BL* *τ*-adjusted inputs
- Ad hoc asset allocation framework
 - BL* identical to Markowitz MSR
 - Does not solve estimation error
 - Requires equilibrium market assumption
 - Unconstrained optimization limitations
 - Often investor risk inappropriate
 - Standards of statistical inference often violated
 - Mirrors traditional non-quantitative asset allocation
 - Not recommendable relative to alternatives

Conclusions - 2

- Effective asset management requires
 - Constrained MV optimization framework
 - Efficient frontier of optimal risk managed portfolios
 - Consistency with standards of modern statistical inference
 - Estimation error effective estimation and optimization technology

New Frontier Advisors, LLC Boston, MA 02110 www.newfrontieradvisors.com

© 2012 New Frontier Management Company, LLC

- Portfolio Monitoring in Theory and Practice, Michaud, Esch, Michaud
 - Forthcoming, JOIM 2012 <u>https://www.joimconference.com/index0.asp</u>
- Non-Normality Facts and Fallacies, Esch
 - Published in *JOIM* 1st quarter 2010
 - Markowitz Special Distinction Award winner, March 2011
- Deconstructing Black-Litterman, Michaud, Esch, Michaud
 - NFA White Paper, forthcoming 2012

Markowitz Award Sponsorship
 NFA proud sponsor Harry M. Markowitz Award at JOIM.
 http://www.newfrontieradvisors.com/Announcements/MarkowitzAward.html

Institutional Investor Article

"From Markowitz to Michaud:" New Frontier's Michaud Efficient Frontier is featured as the latest evolutionary step in Modern Portfolio Theory. http://www.newfrontieradvisors.com/Announcements/documents/Institutional_Investo

r_Modern_Portfolio_Theory_Evolutionary_Road.pdf

Richard O. Michaud

- President, Chief Investment Officer
- Co-inventor (with Robert Michaud) of Michaud Resampled Efficient Frontier[™], three other patents, two pending
- Author: *Efficient Asset Management*, 1998. Oxford University Press, 2001, 2nd Edition 2008 (with Robert Michaud)
- Many academic and practitioner refereed journal articles
- CFA Institute monograph on global asset management.
- Prior positions include:

- Acadian Asset Management; Merrill Lynch
- Graham and Dodd winner for work on optimization
- Former Director and research director of the "Q" Group
- Advisory Board member, Journal Of Investment Management
- Former Editorial Board member Financial Analysts
 Journal, Journal of Investment Management

